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Applications of a moving finite element method
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Abstract

The moving finite element method (MFEM) with polynomial approximations of any degree is applied to a variety of models described
by partial differential equations (PDEs) of the type Gut = Fuxx + H, a ≤ x ≤ b, t ≥ 0, G and F are full matrices. The objective of
this work is to show that the proposed formulation of MFEM is a powerful tool to compute the numerical solution of time-dependent
PDEs involving steep moving fronts. A strategy to choose the penalty constants was devised in relation with the ODE solver tolerances
to improve the robustness of the method. Numerical results concerning combustion model, boundary layer problem, catalytic reactor and
pressurization of adsorption beds illustrate the effectiveness of our scheme. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Moving finite elements; Polynomial approximations; Partial differential equations; Catalytic reactor; Pressure swing adsorption

1. Introduction

In this paper, we propose extensions of the moving finite
element method (MFEM) formulated by Sereno [1]. The
present extension allows us to use the MFEM to solve a
large class of time-dependent partial differential equations
(PDEs). Chemical engineering models often lead to sys-
tems of PDEs whose solution contains sharp profiles in
certain regions of the domain, moving with different veloc-
ities. When the classical finite element method is applied to
problems of this type, a dense space grid is required to elim-
inate oscillations. The moving finite elements, originally
developed by Miller and Miller [2,3], avoids this problem
allowing the movement of the spatial grid. The positions of
spatial nodes are unknowns and the minimization process
places the nodes where they are needed. Our numerical code
has been developed for one-dimensional spatial systems of
time-dependent parabolic PDEs. Solutions are calculated
using Galerkin’s method with a piecewise polynomial basis
in space. In each element, the solution is approached by a
polynomial of arbitrary degree. Lagrange polynomials are
used to define the basis functions. These basis functions are
themselves time-dependent through the time dependence of
the nodal position. We use a different space grid for each of
the dependent variables. As it is known, MFEM has intrin-
sic singularities. To avoid them, we add penalty functions
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to the objective function. Our aim in this paper is to show
that our formulation of MFEM is a powerful instrument
to compute the numerical solution of a variety of difficult
time-dependent PDEs involving fine scale phenomena such
as steep moving fronts. In fact, one of the most significant
features of our MFEM is that the use of polynomial approx-
imations of arbitrary degree enables us to get numerical so-
lutions of great precision with few nodes in each spatial grid.
Numerical results are given to illustrate the effectiveness of
our scheme. We present the results of some numerical experi-
ments on reaction–diffusion equations, convection–diffusion
equations and pseudo-homogeneous axial dispersion model
of a non-isothermal tubular catalytic reactor. Finally, we
apply the MFEM to the simulation of the pressurization of
adsorption beds with a binary mixture of adsorbable gases.

2. The MFEM

Our formulation of MFEM has been designed to solve
systems of PDE,

Gut = Fuxx + H, a ≤ x ≤ b, t ≥ 0, (1)

where the solution u may be a vector, u = [u1, . . . , un] and
the mth equation fits in the following master equation:

n∑
j=1

gm,j (x, t,u)
∂uj

∂t
=

n∑
j=1

fm,j

(
x, t,u,

∂u
∂x

)
∂2uj

∂x2

+hm

(
x, t,u,

∂u
∂x

)
. (2)
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Nomenclature

a, b left and right end points of the
space domain

ci penalty constants, i = 1, 2, 3, 4
�
m,L
i (x) ith Lagrange basis function

Mm number of nodes in ∆m

Nm,L number of interpolation points
in [Xm,j ,Xm,j+1]

Rm PDE residual associated with
the mth equation

Sm,j internodal spring function
t time independent variable
tol1, tol2 ODE solver tolerances
u(x, t) solution of the system of PDE,

u(x, t) = [u1(x, t), . . . , un(x, t)]
U numerical approximation of u
Um(∆m,i) value of Um(t) at the ith node of ∆m

Um,j (t) polynomial approximation to um in
[Xm,j ,Xm,j+1]

Ui
m,j value of Um in the ith interpolation

point of j th finite element of the grid Πm

U̇i
m,j time derivatives of Ui

m,j

v
m,L
i relative positions of interpolation points

Vδ a neighbourhood of a spacial node
x space independent variable
Xm,j left end point of the j th finite element

of the grid Πm

Ẋm,j time derivatives of Xm,j

Zm,j length of the j th element of grid Πm

Greek symbols
εm,j internodal viscosity function
ϕm,i(x) global basis function
∆m ordered set of all spatial and

interpolation nodes
Πm space grid associated to um

We consider Dirichlet, Neumann or Robin boundary condi-
tions and initial conditions satisfying

u(x, 0) = u0(x), a ≤ x ≤ b. (3)

In the work by Sereno [1], G and F in Eq. (1) are identity and
diagonal matrices, respectively. In this work the MFEM with
polynomial approximation of arbitrary degree is extended to
allow full matrices for G and F. The complete discretization
of (1) is obtained in two stages. We start with the discretiza-
tion of space variables. Notice that every dependent vari-
able has its own spatial grid. This semi-discrete procedure,
in which we focus our attention, generate a system of or-
dinary differential equations (ODEs). In order to define the
numerical approximation U to u and the new positions of
the nodes, it is necessary to integrate the system of ODE.
For that purpose, we used the package LSODI developed at

the Lawrence Livermore National Laboratory [4]. Let

Πm : a = Xm,1 ≤ Xm,2 ≤ · · · ≤ Xm,qm ≤ Xm,qm+1 = b

(4)

be the grid associated to um. In the j th finite element of the
grid Πm, we approximate um by an Nm,j − 1 polynomial
obtained using Lagrange basis functions. The positions
of the Nm,L points of interpolation in [Xm,j ,Xm,j+1] are
optimized as in the orthogonal collocation method [1,5].
We define the polynomial approximation Um,j (t) as

Um,j (t) =
Nm,j∑
i=1

�
m,j
i (x)Ui

m,j (t), Xm,j ≤ x ≤ Xm,j+1, (5)

where �
m,L
i (x) is the ith Lagrange basis function, vm,L

i the
relative positions of interpolations points and Ui

m,j is the
value of Um in the ith interpolation point of j th finite ele-
ment of the grid Πm. The first and second spatial derivatives
of Um,j (t) are also polynomials and they can be defined us-
ing the same interpolation points. The approximation Um(t)

to um(t) in [a, b] is the continuous piecewise polynomial
function Um(t)|[Xm,j ,Xm,j+1] = Um,j (t). If we assume that
∆m is the ordered set of all nodes, spatial nodes and points
of interpolation, associated to Πm, we can write

Um(t) =
Mm∑
i=1

ϕm,i(x)Um(∆m,i), a ≤ x ≤ b, (6)

where Um(∆m,i) is the value of Um(t) at the ith node of ∆m,
Mm the number of nodes in ∆m and ϕm,i(x) is defined as

ϕm,i(∆m,i) =
{

0 if i 
= j,

1 if i = j.
(7)

Therefore, the approximation Um(t) is a continuous piece-
wise polynomial function dependent on the nodal ampli-
tudes Ui

m,j and on the nodal position Xm,j . We obtain
ODEs for the nodal amplitudes and the nodes positions by
requiring that their time derivatives, U̇ i

m,j and Ẋm,j , are
chosen, at each instant so that

n∑
m=1

[∫ b

a

(Rm)
2
]

(8)

be minimized. The PDE residual associated with the mth
equation is

Rm =
n∑

j=1

gm,j (x, t,U)
∂Uj

∂t
−

n∑
j=1

fm,j

×
(
x, t,U,

∂U
∂x

)
∂2Uj

∂x2
− hm

(
x, t,U,

∂U
∂x

)
. (9)

Observe that we have two significant problems to solve.
The first one is due to the use of a continuous piecewise
polynomial approximation of arbitrary degree. This kind
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of approximation leads us to define a strategy to the treat-
ment of second order terms. We interpreted second order
terms in the sense of smoothing. In a neighbourhood Vδ of
a node, where the second order terms are not defined, we
smooth off our numerical approximation. By this process,
the integrals involving second order terms exist and have
consistent limits as δ tends to zero, independently of the
smoothing process. We use a smoothing process based on
Hermite polynomial approximation near a node. After that
we use numerical quadrature to compute the integrals of the
smooth approximation, in Vδ . This process avoids the use
of a catalogue of integrals for standard forms of PDEs. The
second one appears because there are intrinsic singularities,
due to parallelism and element folding. To keep away from
this problem, we introduce Miller’s penalty functions into
the minimization process. We add the expression

n∑
m=1

qm∑
j=1

εm,j

∂Zm,j

∂t
− Sm,j (10)

to the objective function (8). The length of the j th element
of grid Πm is Zm,j = Xm,j+1 −Xm,j and we use the intern-
odal viscosity function and the internodal spring function

εm,j =
(

c2

Zm,j − c4
+ c3

) (
1 + c4

Zm,j − c4

)2

, (11)

Sm,j = c1

Zm,j − c4

(
1 + c4

Zm,j − c4

)2

, (12)

where ci are constants supplied by the user. The user may
choose these constants for each grid and for each element.
Penalty functions do not interfere on the solution, but exclu-
sively on the movement of the nodes in order to prevent sin-
gularities. Their disadvantage is that it is not possible to set
up a relation between them and the problem we are solving.
So, if the nodes do not move in the “proper” way, the time
of computation becomes rather large since the error control
of the position of the spatial nodes forces a very frequent
updating of the Jacobian. Some numerical experimentation
is required in order to obtain an adequate set of constants.
Note that the choice of large values for c2 and c3 will restrict
the nodes movement and if we choose different c1 values
for each element of the grid the smaller one will correspond
to the element that can reach the smaller length. c4 is the
minimum permissible cell width. For a summary of various
MFEM, we address the reader to the book by Baines [6].

3. Numerical examples

We present a few numerical examples to illustrate the
working and performance of our MFEM. All the numerical
results presented here are obtained on a Pentium II processor
at 266 MHz. Nodes are initially concentrated near x = a.
The minimum permissible cell width is c4 = 10−5. The
ODE solver tolerances, for nodal amplitudes tol1 and for

nodal position tol2, are tol1 = tol2 = tol = 10−3. In order
to improve the robustness of MFEM, we present a strategy
to choose the penalty constants. In practice, we choose the
values for constants c1, c2 and c3 in relation with the ODE
solver tolerances. For that standard choice of tol, we set c1 =
10−2 × tol, c2 = tol and c3 = 10 × tol. We use Gaussian
quadrature with six interior quadrature points to compute
the integrals appearing in each one of the equation of the
ODE systems.

3.1. A scalar combustion model

The first example is a scalar reaction–diffusion equation
from combustion theory described in [7–9],

∂T

∂t
= ∂2T

∂x2
+ D(1 + α − T ) e−δ/T ,

0 ≤ x ≤ 1, t ≥ 0, (13)

∂T

∂x
(0, t) = 0, T (1, t) = 1, t ≥ 0,

T (x, 0) = 1, 0 ≤ x ≤ 1, (14)

where D = R eδ/αδ and R, α, δ are constants. It is well
known that two phases can be distinguished in the solution:
the formation of the front, ignition phase, and its propaga-
tion to the right end point, the propagation phase. The tem-
perature of a reactant in a chemical system, T , initially at 1,
increases gradually up to a maximum at x = 0. At a finite
time ignition occurs and the temperature at x = 0 increases
rapidly to 1 + α. A steep front then forms and propagates
towards x = 1. The difficulty level of the problem is very
much depending on the value of δ. We use this problem as a
test example with a difficult parameter choice δ = 30, R = 5
and α = 1. We compute the solution with five finite elements
and a polynomial approximation of degree 5 in each element,
on a time interval from t = 0.0 to t = 3.0. For this problem
CPU time is 2.9 s. Fig. 1 presents the temperature profiles.

Fig. 1. Scalar combustion, temperature profiles for δ = 30.
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Fig. 2. The boundary layer problem.

The solution is shown for t = 0, 0.1, 0.238, 0.24, 0.245 and
0.3. The numerical solution is accurate and when compared
with other methods, MFEM is quite advantageous, allow-
ing the use of few nodes, without losing the quality of the
solution.

3.2. A boundary layer problem

The second problem that we studied is a boundary layer
problem. It is a convection–diffusion equation described in
[10],

∂u

∂t
= −∂u

∂x
+ ν

∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0, (15)

u(0, t) = 0, u(1, t) = 1, t ≥ 0, (16)

u(x, 0) = x16, 0 ≤ x ≤ 1 (17)

with diffusion coefficient ν = 10−3, ν = 10−4. We solve
this problem for 0 ≤ t ≤ 500 with eight finite elements
and approximation polynomials of degree 3 in each element.
The CPU time, in seconds, is 3.5 for ν = 10−3 and 3.7 for
ν = 10−4. Once more the MFEM gives a solution of great
quality with few nodes as it is shown in Fig. 2. We presents
curves solution for t = 0 and 500 and nodes position at
these instants. Notice that for t = 0 nodes are concentrated
near x = 0.

3.3. A non-isothermal tubular catalytic reactor

Our third example arising from chemical engineering is
described in [11,12]. This model simulates a tubular catalytic
reactor through the pseudo-homogeneous model with axial
dispersion in the fluid concentration. The model equations,
a mass balance equation and a energy balance equation, are

∂c

∂t
= 1

Pe

∂2c

∂x2
− ∂c

∂x
− Da cT exp(−γ (T −1 − 1)), (18)

∂T

∂t
= τ

τhl

[
−∂T

∂x
+ β Da cT

× exp(−γ (T −1 − 1)) − N(T − 1)

]
, (19)

0 ≤ x ≤ 1 and t ≥ 0. c and T are the fluid concentration
and the fluid temperature normalized by feed concentration
and temperature, respectively. x is the space variable nor-
malized by the length of the bed and t is the time variable
normalized by space–time τ . Pe is the Peclet number, Da
the Damköhler number, γ the Arrhenius number, β the
adiabatic temperature rise, τhl the time constant for thermal
wave propagation and N the number of transfer units for the
heat transfer at the wall. Initial and boundary conditions are

u(x, 0) = 0, v(x, 0) = 1, 0 ≤ x ≤ 1, (20)

∂u

∂x
(0, t) = Pe(u − 1),

∂u

∂x
(1, t) = 0,

v(0, t) = 1, t ≥ 0. (21)

The integration time interval is 0 ≤ t ≤ 1500 and for spatial
discretization, we use eight finite elements for each grid and
polynomial approximation of degree 6 in each element. We
use the same penalty constants except for the grid associ-
ated to the temperature, where the value of c1 is 10−4 for the
four last elements. Fig. 3(a) presents the concentration and
Fig. 3(b) shows the temperature profiles. MFEM gives solu-
tions of great accuracy. At short time, concentration profiles
contain steep fronts that moves to the right. In Fig. 4(a) and
(b) the concentration and temperature histories, respectively,
are represented. The CPU time needed to complete the inte-
gration is 39.6 s. In this problem, we consider τ/τhl = 2.08×
10−4, γ = 21.8, N = 33.7, Pe = 104 and D = β = 0.7.

3.4. Pressurization of adsorption beds

Finally, we present an example arising from pressuriza-
tion swing adsorption (PSA) process. In [13], we presented
a simplified model for pressurization in a PSA process and
simulated the pressurization of adsorption beds with a mix-
ture of an inert and a active species, helium and methane.
Here, we are going to apply that model to the pressurization
of adsorption beds with a binary mixtures of adsorbable
species. Modelling of pressurization involves mass and me-
chanical energy balance equations. Langmuir equilibrium
between adsorbed phase concentration and gas phase con-
centration inside pores for active species is assumed. The
system considered here consists of an adsorption bed of
length L and cross-section area S. At the top and the bottom
there are two dead volumes, with the same cross-section
area, S, and length L1 and L2, respectively. The bed poros-
ity is ε and total porosity is εt . The bed is packed with
adsorbent particles of diameter Dp and the apparent density
of the adsorbent is ρap.

The model is based on the following assumptions: equi-
librium model, isothermal operation and ideal gas behaviour.
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Fig. 3. (a) Non-isothermal tubular catalytic reactor, axial profiles for
concentration. (b) Non-isothermal tubular catalytic reactor, axial profiles
for temperature.

We also suppose that the subsonic flow and pressure drop
versus flow condition relationships are instantaneously
established locally in the bed. Equilibrium relations are
represented by Langmuir isotherms,

q∗
i = Qikic

∗
i

1 + kAc
∗
A + kBc

∗
B
, i = A,B, (22)

where c∗
i is the gas phase concentration of species i, q∗

i

is the adsorbed phase concentration of species i. ki is the
equilibrium constant for component i and Qi the corre-
sponding capacity. Initially the total pressure of the system,
p∗ is p∗ = p∗

l and the mole fraction of species A, yA, is
yA = yA0 . At t = 0 the bed is fed with a mixture of oxygen
and nitrogen at a pressure p∗ = p∗

h through a valve with
section S1 and flow coefficient Cv . The mathematical model
involving a mass balance to the species A, an overall mass
balance and a mechanical energy balance is described by

εt
∂c∗

A

∂t
+ ρap(1 − ε)

∂q∗
A

∂t

= −ε
∂

∂z
(c∗

Av
∗) + εDax

∂

∂z

(
c∗MB

M

∂yA

∂z

)
, (23)

Fig. 4. (a) Non-isothermal tubular catalytic reactor, histories for concen-
tration. (b) Non-isothermal tubular catalytic reactor, histories for temper-
ature.

εt
∂ρ∗

∂t
+ MAρap(1 − ε)

∂q∗
A

∂t
+ MBρap(1 − ε)

∂q∗
B

∂t

= −ε
∂

∂z
(ρ∗v∗), (24)

∂

∂t
(ρ∗v∗) = − ∂

∂z
(ρ∗(v∗)2) − ∂p∗

∂z
− 150

µ∗v∗

D2
p

(
1 − ε

ε

)2

+sign

(
∂p∗

∂z

)
1.75

ρ∗(v∗)2

Dp

1 − ε

ε
, (25)

where the independent variables are time t and axial distance
z. v∗ is the gas velocity, Dax the axial dispersion coefficient,
M the molecular mass, Mi the molecular mass of species i,
ρ∗ the fluid density, µ∗ the fluid viscosity of the binary mix-
ture defined by Curtiss and Hirschfelder [14] relation. In the
simplified model, we neglect the kinetic energy change and
the momentum accumulation terms from Eq. (25) and this
enables us to define the mass velocity, G∗ = ρ∗v∗, in terms
of partial pressure of species A, p∗

A and p∗. Let us consider
the dimensionless model, where independent variables are
x and θ , respectively. Space is normalized by L and time
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normalized by τc = L/vref , where vref = √
RT/MB, R the

ideal gas constant and T the absolute temperature of the sys-
tem. The dependent variables are pA the normalized partial
pressure and normalized total pressure p, both normalized
by pref = p∗

h − p∗
l . The mass velocity, G, is normalized by

Gref = pref/vref . Most of the parameters used in calcula-
tions are those used by Mendes [15] and all the variables
are conveniently normalized.

Boundary conditions are determined by the condition
on dead volumes, so we introduced four extra dependent
variables pA|x=0+ , p|x=0+ , pA|x=1− and p|x=1− . The mass
balances in the regions around the top and bottom of the
bed define four new ODEs that will be integrated with the
system arising from space discretization,

∂pA

∂θ

∣∣∣∣
x=0+

= S1

SL1
ΓGin

− ε

L1

pA

ρ

∣∣∣∣
x=0+

G|x=0+ − ε

L1

1

Pe

λ

ρ

∣∣∣∣
x=0+

,

(26)

Fig. 5. (a) PSA, axial profiles for partial pressure of oxygen. (b) PSA, axial profiles for total pressure. (c) PSA, axial profiles for mass velocity. (d) PSA,
axial profiles for mole fraction of oxygen.

ω
∂pA

∂θ

∣∣∣∣
x=0+

+ ∂p

∂θ

∣∣∣∣
x=0+

= S1

SL1
Gin − ε

L1
G|x=0+ , (27)

∂pA

∂θ

∣∣∣∣
x=1−

= ε

L2

pA

ρ

∣∣∣∣
x=1−

G|x=1−+ ε

L2

1

Pe

λ

ρ

∣∣∣∣
x=1−

, (28)

ω
∂pA

∂θ

∣∣∣∣
x=1−

+ ∂p

∂θ

∣∣∣∣
x=1−

= ε

L2
G|x=1− , (29)

where Γ = yAfeed/(yAfeedω+1) and Gin, is the mass velocity
at the left end of dead volume on the top. Initially, θ < 0,
we have

pA = yA0pl, p = pl, G = 0. (30)

At t = 0, the feed conditions are

pAfeed = yAfeedpfeed, pfeed = ph, (31)

so, at the left end of dead volume on the top,

pin =
{

0.53ph if p|x=0+ ≤ 0.53ph,

p|x=0+ if p|x=0+ ≥ 0.53ph,
(32)
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pAin = yAfeedpin, (33)

Gin =




1.410 × 10−5C if p|x=0+ ≤ 0.53ph,

1.663 × 10−5C

√
1 −

(
p|x=0+

ph

)2

if p|x=0+ ≥ 0.53ph,
(34)

where

C = ph

Cv

S1
yAfeedω + 1. (35)

We consider the integration time interval from θ = 0 to the
instant at which p(1, θ) is very close to ph. Fig. 5(a)–(d)
presents axial profiles of total pressure, partial pressure of
species A, mass velocity and mole fraction of species A,
respectively, when yAfeed = yA0 = 0.22, Cv = 0.05 and the
dispersion parameter Pe = Lvref/Dax = 104. We consider
eight finite elements in each grid and a polynomial approx-
imation of degree 6 in each element. For this example tol-
erance of ODE solver must be smaller, tol1 = tol2 = 10−5.
In order to define the penalty functions, we set c1 = 10−4,
except for the first element of the grid associated with pA,
where c1 = 10−6, and c2 = c3 = 10−3. The CPU time to
achieve the pressurization is 197.0 s.

4. Conclusions

In this paper, we described MFEM based on polyno-
mial approximations of any degree. It has been shown
that MFEM is potentially very efficient to solve difficult
problems, specially if we are interested in obtaining so-
lutions that involve sharp moving fronts. As we pointed
out, a disadvantage of MFEM is that it may produce a
singular matrix. A simple way to avoid singularities is the
use of penalty functions. Penalty functions do not interfere
on the solution, but experience made clear that, in gen-
eral, the choice of penalty constants may interact with the
amount of computation involved. We present a strategy
to choose the empirical penalty constants, establishing a
relationship with them and the value of ODE solvers toler-
ance. This choice seems to be well suited for many prob-
lems. Numerical examples show the excellent behaviour
of MFEM with polynomial approximations of arbitrary
degree. It is important to stress that solutions of high pre-
cision are obtained efficiently using a space discretization
with few nodes. MFEM code is a powerful instrument to
compute the numerical solutions of implicit systems of

time-dependent PDEs involving fine scale phenomena such
as steep moving fronts.
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